
1

Requirements Specification

May 1, 2022

Team Sponsor: Alexander (Allie) Shenkin
Team Mentors: Tom Prys-Jones, Anirban Chetia

Document produced by

Austin Malmin, Conrad Murphy, and ShanHong “Kyle” Mo

2

Table of Contents
1. Introduction 3

2. Problem Statement 3

3. Our Solution: Self-Autonomous Navigation System 4

4. Assumptions Given Budget Uncertainty 5

5. Project Requirements 6
5.1 Functional Requirements 6

5.1.1 Minimum Requirements 7
5.1.1a Automatic detection of objects 7
5.1.1b Move towards a destination 10
5.1.1c Output a direction in which to move 12

5.1.2 Stretch Goals 12
5.1.2a Store and Display/Print the area visited 13
5.1.2b Show a Display Screen of the Planned Path 13
5.1.2c Visit as much of the designated 3D space as possible 13

5.2 Performance Requirements 14
5.2.1 Obstacle Detection Size and Range 14
5.2.2 Field of View 15
5.2.3 Memory Write Speed 15

5.3 Environmental Requirements 16
5.3.1 Physical Environment 16
5.3.2 Technological Environment 17

6. Potential Risks 17
6.1 Risks Related to Drones 17

6.1.1 Damage from Collisions 17
6.1.2 Mitigation of risks for/from drones 18

6.2 Sensors Producing False Data 18
6.2.2 Mitigating Sensors Producing False Data 19

6.3 Damage from LiDAR Laser Pulses 19
6.3.1 Damage to Humans from LiDAR 19
6.3.2 Damage to Cameras from LiDAR 19
6.3.3 Mitigation of Damage from LiDAR Lasers 20

6.4 Loss of Team Member(s) 20
6.4.1 Mitigation of Losing Team Members 20

7. Project Plan 21

8. Conclusion 24

9. Glossary 25

3

1. Introduction
In the world of automation, normal mundane tasks are being replaced by artificial

intelligence that can perform these jobs at higher efficiency and with better accuracy.

The world is starting to see a breakthrough in the field of robots and drones that can

move independently of an operator, which are referred to as autonomous. Today,

humans are currently performing tasks that can easily be automated with self-guided

drones. Search and rescue missions can prove to be dangerous in places not easily

navigated by humans, such as collapsed caves, house fires, war zones, etc., but a

drone could make these missions safer and more efficient. Amazon has already taken

use of autonomous drones in their delivery of goods throughout the United States and

the United Kingdom. The dusting of crops with drones and planes piloted by humans

can be inaccurate and expensive, whereas autonomous drones offer precision and

require no manual labor which cuts down on costs. Our focus is the study of rainforest

ecosystems through the use of autonomous drones.

Mapping the upper and lower forest canopy currently requires a researcher to manually

move a ground-based sensor through the forest which is time-consuming and difficult.

The sensors used are Light Detection and Ranging (LiDAR). LiDAR sensors measure

the time for a laser beam to return once fired to determine the distance of the object

from the sensor and create a 3D model of the environment, whether on land or on the

seas. Ecologists perform research focused on how forests around the world respond to

climate change and simulate the effects certain changes in the climate would have on

the environment. Team Mockingbird is working with Dr. Allie Shenkin to build an

autonomous drone navigation system.

2. Problem Statement
Dr. Alexander Shenkin studies forest 3D structure, and his current workflow involves

traversing the forest on foot using a LiDAR sensor on a tripod to scan the canopy from

the ground level. Groups of researchers trudge through the forest until they find an

adequate spot, at which point they will set up the 360-degree LiDAR device to map the

4

nearby surroundings. Each LiDAR scan comes from a single vantage point. Therefore,

researchers must repeatedly traverse the forest and find numerous different vantage

points in order to create a satisfactory point cloud map.

There are many problems with this current workflow that render it unsatisfactory. Firstly,

the process takes an unreasonable amount of time. According to Dr. Shenkin, a hectare

(100m x 100m) of the forest requires a full week for a team of 2-3 people to cover with a

ground-based LiDAR. Secondly, scanning from fixed points at ground level is a bad way

to scan the details of tall trees. Surrounding overgrowth hinders the line of sight to the

upper canopy, which results in some details being missed. As a result, forest ecologists

receive an incomplete picture of 3D forest structure. Since forest structure dictates how

the forest functions, such as a tree’s resilience to climate change and the strategies

employed to survive, incomplete data results in an incorrect assessment of what the

forest is doing. A more detailed picture of forest function is important because it would

allow researchers to more accurately simulate these functions and determine how the

forest ecosystem responds to changing variables in the environment.

Dr. Shenkin wants an alternative solution that takes less time and hassle while providing

more accurate results, all of which can be achieved using autonomous drones.

3. Our Solution: Self-Autonomous Navigation
System
In order to resolve the issues inside our client's workflow, we have been tasked with

creating a navigation system for a self-autonomous drone. This system will detect

objects in its path and find safe directions to travel in order to maneuver around them.

Over time, the system would build a map of the space to be saved as data for his

research.

An autonomous drone provides a faster, easier, and more effective alternative to Dr.

Shenkin’s current workflow. Instead of a team of researchers, a drone would be able to

5

scout the plot of forested land with no outside intervention from human crews. The

drone would be capable of flying up into the canopy, collecting data that is inaccessible

to researchers confined to the ground level. Additionally, while a handheld LiDAR needs

to be mounted in fixed spots throughout the forest, a drone with a sensor can take rapid,

continuous snapshots as it moves. This drastically increases the speed at which the

mapping process is completed while ensuring a more complete picture of the forest

environment.

Our system’s hardware consists of a Raspberry Pi and a LiDAR sensor. The Raspberry

Pi is a minicomputer that will serve as the main processing power for our navigation

system. It will be fitted with Robot Operating System (ROS), a standard platform for

use in robots and autonomous drones. ROS supports a number of different software

packages and libraries that enable a computer to convert raw scan data from the LiDAR

sensor into a usable format. The scan data is utilized to perform Simultaneous
Localization and Mapping (SLAM), a procedure that generates a map of the

surrounding environment in real-time. The map can then be used to detect and avoid

obstacles. The system will also store the map as a point cloud file on an onboard SD

card.

4. Assumptions Given Budget Uncertainty
Throughout this paper, our team was required to make assumptions given the

uncertainty of our budget and the availability of hardware components due to supply

chain delays. These assumptions may have to change as the project progresses;

however, these assumptions must be made in order to complete this document. We

have made the assumption that a 2D LiDAR will suffice for the needs of this project’s

first steps. The sensor we will be using is an RPLIDAR A1M8-R6 - 360 Degree Laser

Scanner (Figure 4). However, recent experimentation with the hardware reveals that a

2D LiDAR does not meet our needs. Moving forward, we will experiment with other

options for sensing objects in 3D space. Another assumption made by this team is that

the power required from the system will be provided by the drone. However, in order to

6

get a working product, we will not have access to a drone, so our system will be

powered by a battery. All of these things will be detailed heavily inside this paper but will

be subject to change.

Figure 4 Hardware Visualization

Figure 4: An RPLidar A1M8 sensor which we assume is a given for our project.

5. Project Requirements
For this project, our team has broken down the requirements into 3 distinct sections:

functional, performance, and environmental. Functional requirements are what our

system is going to do. Each of these different requirements is broken down in detail in

section 5.1. Performance requirements describe the minimum acceptable performance

of our product and will be detailed in section 5.2. Lastly, the environmental requirements

are the constraints imposed on the team by the physical environment and the users.

These will be detailed in section 5.3.

5.1 Functional Requirements
Overall, our navigation system must be capable of guiding an arbitrarily-sized drone

through the understory without crashing. This means it must detect objects of very small

sizes and maneuver around them if they will pose a threat to the drone. The drone

should also create a point cloud map of the space and store it in memory for future use.

In addition to these considerations, the system must be compatible with existing drone

hardware and be able to interface with its movement system built on ROS. Since our

7

system will not be used on a physical drone within the scope of this project, it will simply

display a basic output of the direction that the drone should move.

5.1.1 Minimum Requirements
The minimum requirements are those needed to create the most basic viable product

for our project specifications. In this section, we list three basic functions that the drone

must be able to perform, then break these functions down into specific instructions and

algorithms within the software.

5.1.1a Automatic detection of objects
This is the most important minimum requirement as this is the starting point of the

project since detection of objects as a requirement will be used in other requirements.

Per our starting assumptions, the navigation system will use a LiDAR sensor. A LiDAR

sends out many laser pulses in the form of photons at many different angles depending

on the make and model of the sensor. In our case, the RPLidar A1 has an angle of

about 1 degree between each beam. Even though the degree difference between

beams seems small, as the distance that the LiDAR needs to scan increases, the

distance between each beam also increases. As a result, the LiDAR might miss small

objects positioned in between pulses. That is why it has a guaranteed data accuracy for

a range of 6 meters, even though it can scan up to 30 meters but with less certain

accuracy as detection range increases.

When a laser pulse strikes an object, it will reflect back to a receiver within the sensor. A

point in space is generated based on the time that it took for the photons to arrive back

to the receiver. For example, if it took the photon 0.01 seconds to come back to the

receiver while another photo took 0.02 seconds to come back, then the 0.01 point will

be closer to the LiDAR and the 0.02 point will be twice as far away. Each point is stored

within a point cloud in the form of its XYZ coordinates. Currently, we are using a 2D

LiDAR, which means that even though it only scans the XY coordinates, it will output the

XYZ coordinates with the Z value set to the default value of 0.

8

Because our sensor and its relevant vision libraries depend on the Linux operating

system, our navigation system will be connected to a Linux-based computer, such as a

Raspberry Pi. While waiting for the Raspberry Pi to arrive, we will use a Linux virtual

machine (an emulated copy of the Linux OS which can be run within a different

machine) to operate the sensor. This computer will have a vision library which performs

Simultaneous Localization and Mapping (SLAM), called HectorSLAM. This vision

library takes in data from the sensor’s receiver and calculates the position of each point,

accounting for how much the LiDAR sensor has moved from its starting position. For

example, if the LiDAR moves north, HectorSLAM updates the LiDAR’s position based

on how far north it has moved since it was powered on. If it begins moving east, the

library offsets the LiDAR’s position east as well. Point clouds are displayed on a map

with a fixed size. For example, if the map display is set to be 3000 pixels (which is 10

inches on a computer screen), the distance that was calculated will have to fit in the

10-inch map. So if an object is 32 meters away, it will be drawn close to the edge of the

map, while an object that is 1 meter away will be closer to the center. Figure 5.1

summarizes how HectorSLAM draws the map. In summary, all systems (sensor, vision

library, and ROS) will function together to create one instance of a map. Every time the

LiDAR sweeps across all 360 degrees of space, a new map is created. These map

instances are all overlaid onto one main map.

9

Figure 5.1 How LiDAR Sensors Generate Images

Figure 5.1: How the vision library and sensors generate images. PF stands for particle

filtering

Link: https://www.hindawi.com/journals/jr/2018/7806854/

The vision library and the sensor (RPLidar A1) mentioned above will also need to work

with Robot Operating System (ROS) as well as the computer that the team is using.

ROS interacts with the Linux computer via the command line. There are commands to

launch ROS, launch certain packages and libraries within ROS, etc. Some of the vision

libraries also open GUIs which can be used to control certain display options. For

https://www.hindawi.com/journals/jr/2018/7806854/

10

example, a certain button on HectorSLAM’s GUI can be toggled to begin generating

maps. A binary value of 0 is used to denote False, and a 1 represents True. When a

map is not being generated, the setting is set at a “0”, but when the user toggles the

option to generate a, the “0” will be replaced as a “1” meaning that it wants the system

to generate maps.

Other than the details already mentioned with the interaction between ROS and LiDAR

with the vision library, it will also remember the maps. As mentioned above, the maps

are generated many times with new ones layered on top of each other. The system will

remember details about places visited previously, so it will register certain clusters of

points as objects. This data is very crucial, as it will support automatic detection of

objects and eventually play a role in creating safe routes throughout the environment (a

stretch goal covered in section 5.2)

5.1.1b Move towards a destination
While detecting and mapping the surrounding environment, the system must have

goal-oriented movement towards a specific direction. This means the drone must be

capable of making overall progress in a certain direction. The drone may take one step

back to get out of dead ends as long as it can move two steps forward later on.

Using the point cloud created, there will be a method in the ROS (with the support of the

sensor and its vision library) that will create a path that is mentioned in the requirements

for automatic detection of objects (as mentioned above, the sensor shots thousands of

beams per second, meaning that even if it is moving, it will still produce an accurate

map of its surroundings). Since the map has a point cloud that is normally black (which

can be changed to another color based on the user's preference), it also means there

are white spaces that aren't part of the point clouds that represent empty space. The

goal is to stay within the white space and avoid black points. There are many ways to

tackle this problem but they all generally come down to the same idea of principle which

is to calculate the distance between the same object. As stated above, the map is only

X inches long and wide on the computer which represents a certain amount of pixels

11

(10 inches means 3000 pixels), and those pixels will represent the distance between

objects (for example, one pixel will represent 1cm in some cases while sometimes will

represent 2cm depending on how far we measure). One method of doing this is to

calculate the distance between the black point clouds, using an example, in the codes,

we can set the drone as 100 pixels long and wide and create a function that calculates if

the drone can fit or not by returning a binary number such as “0” and “1” where “0” is

false and “1” is true. This function will take the drone’s pixel length and the pixel length

of distance between two point clouds and if the pixel between two point clouds is

greater than the pixels of the drone, it will return a “1” as it will represent it will fit

otherwise it will return a “0”.

Our system will take a greedy approach to move in the specified direction. The drone

will make as much progress as it can in the preferred direction, as long as it doesn’t

detect obstacles that cannot be avoided without backtracking. This means that as long

as it doesn’t detect an obstacle, it will have permission (the function will return a “1”) to

continue to move in that direction. If the drone does reach an obstacle (set the function

to return a “0”), our system will have a function that will find whether to move left or right

based on point clouds generated and calculated by finding a path that has enough

space for the drones to travel (so the function will return a “1” again when found a

suitable path to take). And it will continue to do so until it reaches a dead-end, meaning

it can’t go forward or to the sides and can only go backward. Because the system

remembers the path that it took previously, the drone will go back to the previous area

where it made a decision to go a certain path, for example, if previously encountered an

obstacle where it can go right and left and the system chose “right”, this time it will go

back to that place and will choose “left” (we will set that if there are two options of right

and left, the system will always pick right first). If the previous section only had one

choice of left and it already went left, it will go back to the previous section before this

section that it made a choice, it will continue to make this decision until it reaches the

destination that it was meant to go.

12

5.1.1c Output a direction in which to move
Our system must periodically output a direction in which to move. This direction will be

defined as an angle relative to the drone’s current facing direction. The direction can be

further generalized into a simple Forward, Left, Right, and Backward based on which

quadrant the angle occupies. The type of output (angle or cardinal direction) can be

chosen by the user by including a flag in the command line when run. Since our project

assumes a 2D LiDAR, we do not need to worry about 3D movement up and down for

now.

Drones running ROS have a pre-existing interface to fly the physical drone in a

specified direction. This interface contains functions that, when called, fly the drone in a

certain direction for a certain amount of time. The fine-tuning of how fast each motor

should spin in order to move in any given direction will already exist on the drone. This

means we do not need to invest time into developing the movement algorithms

ourselves. Also, we will not be working with a physical drone within the scope of this

project. Instead, our hardware will be mounted onto a piece of wood or another hard

platform as a replacement for the drone. Therefore, our directional output will be left as

a simple print to the command line. Human operators will move the platform in the

direction the system wants to move in order to simulate drone flight. If the platform can

be moved throughout the space according to our system’s orders without crashing into

obstacles, then that is an indication that our project has succeeded. In the future, when

the scope of the project broadens to incorporate a real drone, our simple output can be

translated into a function call to the drone’s interface.

5.1.2 Stretch Goals
Following the completion of the core requirements, the following stretch goals are listed

in feasibility from most to least. The first stretch goal is storing the 2D map onto an

external SD card. The second stretch goal is that the drone will display a planned path

to the user before actually doing it so the user can interrupt it in the case that is not what

the user desired. The third stretched goal is that if we are to give a designated area to

13

the drone, the drone has to be able to avoid crashing into obstacles and visit as much

3D space as possible to get a detailed map of the area.

5.1.2a Store and Display/Print the area visited
As the drone moves throughout the environment, it will be stitching together a map of

the environment by plotting the point clouds given from the LiDAR. This process can be

viewed in real time via HectorSLAM’s graphical interface. Once the flight is complete,

the map from HectorSLAM will be complete. This map needs to then be saved and

written to the SD card. The map is saved as a list of all points in the point cloud.

5.1.2b Show a Display Screen of the Planned Path
Please read the minimum requirements for automatic detection of objects as this

requirement is built upon the previous requirements, meaning a lot of information is

relevant and important.

Before the drone takes off or starts navigating, the sensor will send photons out and

receive information based on the photons that got reflected back(explained in 5.1.1 and

5.1.2). Since the system can already detect an object and determine if it can move left

or right depending on if the open space is big enough for the drone to move into, all we

have to do is have a function that can draw all possible paths that the drones can take

by measuring the open space. All this function will do is return the possible path that the

drone can take to the user’s screen. When this is completed, we will add a function that

can override the system (remember that the drone will always take right when it meets

an obstacle in front of it) to allow the user to determine the direction for the drone to

move to the user’s preference.

5.1.2c Visit as much of the designated 3D space as possible
After giving the drone commands, with the ability to detect objects, the drone will move

in the XYZ (3D) plane by avoiding objects and stopping at the point that it was

designated. Due to limitations on our budget, this will only happen in a 2D plane as the

Z coordinate will always be 0. If the drone detects an object, it will stop and the user has

14

to manually give commands to make it move around it. The way that the drone will visit

as much 3D space as possible is a working progress but the idea is that based on the

previous requirement of showing a display screen of the planned path, we will use the

map where the black/red dots are point cloud that the drone can’t access and the

knowledge of the space that is big enough for the drone to go through, the system will

have a flag saying true or false for if a path has already been crossed through if it has,

we will probably color the path so that the user can look and tell that drone already look

through this area and will then go and continue to go to the path that hasn’t been

colored red yet (the colors so far is hypothetical to make a point).

5.2 Performance Requirements
Our sponsor has listed several exact specifications for our navigation system’s

performance in order to minimize crash risk and increase mapping efficiency. The

system must detect obstacles of a certain size, scan a certain field of view within the

space, and scan up to a certain distance. Additionally, the memory writing component

must write fast enough to keep the system operational and not stall the drone.

5.2.1 Obstacle Detection Size and Range
The jungle contains many small branches, lianas, and vines, all of which could damage

or destroy the drone if crashed into. To navigate the thick jungle environment, our

system must detect and avoid obstacles of width 1cm or larger from a distance of at

least 1 meter in advance. In response to the presence of these obstacles, the system

must be able to find spaces that are large enough to accommodate the drone’s size.

Based on our feasibility research, some LiDAR sensors are sufficient for detecting these

small objects, and some are not, depending on the cost and quality of the sensor. We

will test the accuracy of our 2D LiDAR in upcoming stages of the project. Our testing will

involve placing a small object, such as a marker or pencil, and attempting to scan its

location with our LiDAR sensor. If the sensor can consistently detect the object from at

least one meter away, then the sensor will be satisfactory for our needs. If this is not the

15

case, then we will explore other types of sensors and find one which will perform to the

project’s standards.

5.2.2 Field of View
The autonomous drone must be capable of identifying objects situated 20 degrees

above and below it to ensure that it is safe to maneuver. This requires that the drone

has a field of view that spans both a horizontal and vertical distance. By extension, the

system must also be capable of plotting points in 3D space to account for this field of

view.

Unfortunately, our low budget limits us to only a few options for LiDAR sensors,

meaning it is very unlikely that we will have a sensor that rotates both horizontally and

vertically. Our current working budget is expected to be around $500, allowing us to

purchase a LiDAR sensor that only scans across a 2D plane. We had plans to

periodically tilt the mounted LiDAR sensor up and down during flight to sweep over a

20-degree field of view. However, recent testing with a 2D LiDAR reveals that the

sensor is not capable of detecting 3D motion or plotting in 3D space. Therefore, it is

entirely impossible to scan a 3D field of view with our current hardware. There exist

LiDAR sensors that can fire pulses at slight vertical angles; however, these products

often range in the tens of thousands of dollars–far beyond our budget. We will continue

to search for hardware which suits our needs during upcoming steps in the project’s

development.

5.2.3 Memory Write Speed
While flying and generating its point cloud map, the drone must be able to write the map

into permanent storage. The map will be stored as a point cloud file which can then be

exported to other systems for external use. For instance, a completed map of the

rainforest could be imported into a virtual simulator or game engine, where a researcher

could perform a wide range of experiments modifying the environment such as testing

how different rainfall levels in the environment impacts the environment.

16

The memory writes speed should occur at a minimum of 100 MB/s (megabytes per

second). Our sponsor expresses relatively little concern for memory write speed;

however, it is possible that a drone with low write speed could stall in the air, wasting

time and processing power writing to storage instead of collecting new data points.

Therefore, the 100 MB/s limit is a suitable baseline for anticipating and preventing this

problem.

5.3 Environmental Requirements
The environmental requirements are constraints imposed on the project by the drone’s

physical environment, the available technology, or the client. Each environment has its

own requirements which will be covered in this section. Write speed could be

considered an environmental requirement as it's something that the client requested but

it has been covered under the performance requirements so it will be left off this section.

5.3.1 Physical Environment
For the physical requirements, the weather must support drone flight. This includes but

is not limited to: no extreme winds, no rain or snowfall, and adequate light present. The

LiDAR sensors must avoid direct sunbeams which are capable of causing damage to

the inner components. This is only a concern near dawn or dusk when sunbeams come

in laterally. Another requirement given to this team by the sponsor is that we use ROS.

This is due to the fact that ROS is compatible with any drone movement system that this

system may be used to navigate. Another thing to consider is the total weight of our

hardware. Mounting extra components onto the drone will cause it to expend more

energy to lift the additional weight. The weights of the LiDAR and Raspberry Pi are

known: The LiDAR weighs 170 grams and the Raspberry Pi weighs 46 grams. The

weight of the mounting gear will depend on the medium chosen. In order to power our

prototype, which is separate from a drone, we will be using an external battery; this

does not need to be included in our weight calculations as the system assumes it draws

power from the drone battery.

17

5.3.2 Technological Environment
As for the technological environment requirements, it has been determined by this team

inside our technical feasibility study that the Raspberry Pi is a requirement as there are

no viable alternatives to the Raspberry Pi. The power that our system will require is also

a requirement as this system cannot draw extensive power from the drone and take

away from drone flight time. Our system will shorten the flight time but it must not hinder

the drone completely.

6. Potential Risks
There are many risks associated with our project because we anticipate that this

navigation system will be used in real fieldwork. We are programming a drone to

navigate and scan surroundings so there are many risks involved with the team, the

drone (hardware and software) and the environment. This section will be broken down

into risks when our navigation system is attached to a drone, as well as risks unrelated

to a drone.

6.1 Risks Related to Drones
The following section will detail the risks that relate to drone collisions. The first risk is

collision damage to the drone itself; the second risk is injury to human operators or

bystanders.

6.1.1 Damage from Collisions
Damage from collisions poses a danger to both the drone and its surroundings. Crashes

can happen because of many factors that can happen at any moment–for example, a

sensor malfunction where the drone can’t detect an object and crashes into it, or a

connection interference which will immediately cause the drone to stop receiving

commands. The drone has many sensitive components, such as sensors and rotors,

that can be damaged and will be extremely costly to repair or replace. A drone collision

involving a human could also result in severe injury to the human. While these risks

18

have a low likelihood (3), they have high severity. This is because the drone parts are

expensive to replace and repair, as well as because it can damage the environment and

injure people. These risks are given a low likelihood as the parts for these drones have

undergone testing and have all passed before being deployed. Nonetheless, if the user

flies the system under improper conditions, then the likelihood of collisions will increase.

6.1.2 Mitigation of risks for/from drones
● Let a professional pilot the drone or learn it from professionals

● Check drones before it flies such as battery life, connections to the computer,

sensors attachments, etc

● Pilot the drone when the environment is clear of unwanted objects

● Fly the drone only when the environment is suitable, for example when there are

no rain, lightning, wind and etc

6.2 Sensors Producing False Data
Every sensor has a weakness. For instance, our 2D LiDAR sensor has trouble detecting

objects at very close range (<30cm), and it also tends to miss objects that are far away

if the laser pulses are fired at angles which miss the object. Sensors can also be

damaged; if so, they will need to be replaced or repaired. Any damage to sensors will

produce errors in data. Out of the box, some sensors can be faulty. In order to avoid

this, our team tested our sensor before implementing it into the system. Now in the

event of a sensor producing a false reading the following can all happen:

● Wrong data could lead to wrong information produced for the sponsor

● Require new sensors

● Cause a collision

Due to these outcomes this has been given a severity score of 8. Not only can this lead

to inaccurate research for our sponsor but it also can lead to damage to the drone and

sensor.

19

6.2.2 Mitigating Sensors Producing False Data
In order to mitigate the risks detailed in 6.2, the user should perform a visual inspection

of the sensor before each flight to ensure no physical damage has occurred. If this is

the case do not fly the system and replace the sensor. The user should also fly the

system in proper conditions as direct sunlight or direct light into the sensor can provide

false readings and damage the sensor.

6.3 Damage from LiDAR Laser Pulses
LiDAR utilizes laser beams and the time of return to create a mapping of the

environment but what happens to the objects they impact and reflect off of. In most

cases, the reflection causes no damage as the object is wood or metal but there are

some impacts that can cause damage such as human eyes and cameras.

6.3.1 Damage to Humans from LiDAR
Straight contact of the LiDAR laser beam with a human eye can cause vision loss,

headaches, and blindness. While this does have a very low likelihood (3) of occurring

due to the drone mapping a large 3d space it has such a large severity score (10) with

such easy prevention it is mentioned in this paper.

6.3.2 Damage to Cameras from LiDAR
Similar to human eyes, cameras also can be damaged by the laser beams from LiDAR

sensors. This does have a higher likelihood(5 to 6) of occurring as a camera around

our system will be more likely actively taking a picture of the system exposing the

camera to the laser beams. In the event of direct contact with the camera lens and a

LiDAR laser beam, the camera will be rendered useless. This has a low severity score

(2) as a camera can be replaced but can also be easily avoided.

20

6.3.3 Mitigation of Damage from LiDAR Lasers
Mitigating damage to both human eyes and cameras is easy and not costly. Simply

wear proper eye protection and cover camera lenses when in parallel with the drone.

This will not allow the laser beam to penetrate the vulnerable surfaces.

6.4 Loss of Team Member(s)
Because each team has a role, any member leaving or not doing their job means more

work for other members. Because we are using electrical equipment and a lot of

hardware that could harm each member, members that use the equipment must be able

to know the basics before doing it.

● Members must be trained in the equipment that they are using

● Members must wear protective equipment if it is needed

● Members that might leave the team must inform the team so the team can have

measures for it

While this is unlikely as everyone needs to complete this course to graduate it did

happen to this group already and we have given this a likelihood score of 3. In the event

we lose another member, the group would suffer heavy losses. Each member has their

role, losing members means someone has to pick their role up and responsibilities.

6.4.1 Mitigation of Losing Team Members
As detailed in the course the members have a process to express concerns and to give

any team member a chance to respond. Before this action needs to be taken, internal

team communication is essential to not lose a team member.

21

Figure 6 Summary of Risks

Risks Likelihood
1-10, 10 is going to happen

Severity
1-10, 10 is most severe

1. Damage to the drone from
collision

3 10

2. Injuries to the user or
bystander due to collision

3 10

3. Sensors might produce
data errors

4 8

4. Sensor that uses laser
could damage people’s eye

3 10

5. Sensor that uses laser can
damage cameras

5-6 2

6. Losing team member 3 10

Figure 6: A summary of the risks that the project presents.

7. Project Plan
Our project plan involves budgeting, ordering, and testing our hardware in order to

devise a prototype demo of our system.

So far, we have discussed budget restraints among our sponsor, Dr. Shenkin, along with

the Capstone coordinators. Based on the project requirements and findings in our

feasibility study, our budget is a severe limiting factor for obtaining and testing

higher-quality LiDAR scanners with our system. For instance, the LiDARs that we

researched in our feasibility study only swivel horizontally; this is not as ideal as a 3D

LiDAR which can sweep vertically as well. Because of these limitations, we will need to

reconsider our choices of hardware, such as using a camera instead of a LiDAR. In the

best case, we could reach out to a hardware distributor and get them to donate or lend

22

one of their products. In the worst case, we would need to design additional features

into the navigation system in order to work around our limited equipment.

While waiting to receive our final budget, we plan to purchase some pieces of

equipment that we know we will need. For example, we have ordered a cheap

RPLiDAR A1 which we will use for our demonstration. Although not ideal for our final

model, the LiDAR will allow us to test our vision libraries with live data. This model may

be returned and exchanged for a higher-end model if the budget allows. We will also

order a Raspberry Pi, which is currently low in stock. Shipping times prevent us from

receiving one until July. Another example is an SD card. This will be relatively easy to

purchase, but memory storage is a secondary concern and therefore not something we

need to address until later in our project schedule.

By the end of this semester, we will need a demo navigation system that we can present

to our mentors. Since we have a LiDAR sensor ready for use, we can showcase

point-cloud SLAM occurring in real time and demonstrate how the system reacts to

nearby obstacles. The SLAM demo will take place on a computer running ROS.

Since we are new to ROS, we will meet with Dr. Truong Nghiem early in the fall

semester for an introduction on how to work with ROS. This introduction to ROS will

likely involve utilizing ROS’s interface as well as the drone’s existing motion system.

The drone can already move in whichever direction the user commands it to move, so

we will only need to know how to give the drone directions using ROS’s interface.

Figure 7a summarizes our project schedule for the end of the Spring semester, and

Figure 7b summarizes the schedule moving forward into the summer and fall months.

23

Figure 7a Project Schedule Gantt Chart

Figure 7a: A graphical summary of our semester project schedule.

Figure 7b Summer Schedule Gantt Chart

Figure 7b: A graphical summary of our summer project schedule. Starting at the end of

April.

As stated in section 4, the information above is also subject to change as the project

progresses. This is largely due to budget constraints. The timeline of this project is also

thrown off as COVID-19 is affecting the availability of hardware such as a Raspberry Pi

and certain LiDAR sensors. This disruption of the supply chain may push back the

desired timeline for this project.

24

8. Conclusion
Autonomous drones are a major advancement in many different fields of study and

service, including the study of intricate details in the rainforests. Dr. Alexander Shenkin

is a researcher and climatologist who is attempting to create detailed maps of plots of

forested land. His current workflow is slow and tedious, requiring large investments in

time and manpower in order to create a map that is not even complete. This approach is

unwieldy and unsatisfactory, and a better solution is needed.

Our mapping system will greatly improve Dr. Shenkin’s workflow in his study of the

rainforest, allowing for faster and more efficient data collection from our ecosystems.

This data will help us understand our environment much more intricately, revealing

important conclusions such as the effects of climate change and the mitigation of

carbon in the atmosphere.

This document lays the foundation for everything we will need to create in the coming

months. Following the completion of our requirements, we will continue to test available

hardware and search for other hardware options that better suit our goals. We will also

continue to familiarize ourselves with ROS and its vision libraries.

If we fulfill our goals, we will have a powerful module for automated navigation and

mapping which could serve as the foundation for other data analysis tools. Dr. Shenkin

could mount the drone with other types of sensors that measure light, humidity, heat,

and other environmental factors, allowing for a more complete understanding of the

environment’s structure and function. Thanks to the drone’s maneuverability, this

comprehensive data would be quickly and easily obtainable. It would eliminate the

trouble of sending a workforce of researchers to map by hand, saving hundreds of

hours of labor.

25

9. Glossary
Light Detection and Ranging (LiDAR) Sensor: A device that is used to locate objects

in space. It consists of a rapidly firing laser beam as well as a returning light reader. The

laser beam fires pulses in various directions, which reflect off of objects and return to

the sensor for reading. Based on the angle at which the pulse was fired and the amount

of time it took to rebound, the LiDAR can determine the location of an object as a point

in space.

Nghiem, Dr. Truong: Our technical advisor for this project. Offers his expertise and

knowledge on different types of LiDAR and how to use ROS.

Point Cloud: A dataset consisting of a collection of points in 3D space, where each

point represents a solid object detected by a sensor. Point cloud maps often contain

millions of individual points.

Robot Operating System (ROS): An operating system which is considered standard

for use in robots and autonomous drones. It includes a number of different interfaces

and libraries that will allow our navigation system to command the drone to move in a

specified direction.

Shenkin, Dr. Alexander “Allie”: Our sponsor for this project. His field of study involves

collecting data about rainforests to better understand their structure, function, and

response to changes in the environment.

Simultaneous Localization and Mapping (SLAM): A standard or protocol for mapping

spaces in real-time. A SLAM system will use sensors to detect obstacles in its

environment, then simultaneously upload the data into a procedurally-generating map

which can be used during runtime and/or stored for future use. This data is often

recorded as a collection of millions of points, collectively known as a point cloud.

26

Accepted as baseline requirements for the project:

For the client:

Alexander Shenkin

For the team:

Austin Malmin

Conrad Murphy

ShanHong “Kyle” Mo

